
ar
X

iv
:1

70
7.

00
52

4v
2

 [
cs

.L
G

]
 2

7
A

pr
 2

01
8

Hashing over Predicted Future Frames for Informed Exploration of
Deep Reinforcement Learning

Haiyan Yin, Jianda Chen, Sinno Jialin Pan

Nanyang Technological University, Singapore

{haiyanyin, jianda001, sinnopan}@ntu.edu.sg

Abstract

In deep reinforcement learning (RL) tasks, an effi-
cient exploration mechanism should be able to en-
courage an agent to take actions that lead to less fre-
quent states which may yield higher accumulative
future return. However, both knowing about the fu-
ture and evaluating the frequentness of states are
non-trivial tasks, especially for deep RL domains,
where a state is represented by high-dimensional
image frames. In this paper, we propose a novel in-
formed exploration framework for deep RL, where
we build the capability for an RL agent to predict
over the future transitions and evaluate the frequent-
ness for the predicted future frames in a meaning-
ful manner. To this end, we train a deep predic-
tion model to predict future frames given a state-
action pair, and a convolutional autoencoder model
to hash over the seen frames. In addition, to utilize
the counts derived from the seen frames to evalu-
ate the frequentness for the predicted frames, we
tackle the challenge of matching the predicted fu-
ture frames and their corresponding seen frames at
the latent feature level. In this way, we derive a reli-
able metric for evaluating the novelty of the future
direction pointed by each action, and hence inform
the agent to explore the least frequent one.

1 Introduction

Reinforcement learning (RL) involves an agent progressively
interacting with an initially unknown environment, in order to
learn an optimal policy with the objective of maximizing the
cumulative rewards collected from the environment [Sutton
and Barto, 1998]. Throughout the learning process, the RL
agent alternates between two primal behaviors: exploration -
to try out novel states that could potentially lead to high future
rewards; and exploitation - to perform greedily according to
the learned knowledge. In the past, exploitation of learned
knowledge has been well studied, while how to efficiently
explore through the state space is still remained as a critical
challenge, especially for deep RL domains.

In deep RL domains, a state can be represented by low-
level sensory inputs, such as image pixels [Mnih et al., 2015],
which is often high-dimensional or/and continuous. Thus,

the state space for deep RL is huge and often intractable for
searching. When performing exploration through such a huge
state space, most existing single-task (e.g., [Wang et al., 2016;
Schaul et al., 2016; Bellemare et al., 2016]) and multi-task
(e.g., [Parisotto et al., 2016; Rusu et al., 2016; Yin and
Pan, 2017]) deep RL approaches adopt a simple exploration
heuristic, ǫ-greedy strategy, where the RL agent takes a ran-
dom action with a probability of ǫ, e.g., via uniform sam-
pling for discrete-action domains [Sutton and Barto, 1998;
Mnih et al., 2015] or corrupting action with i.i.d. Gaussian
noise for continuous-action domains [Lillicrap et al., 2016].
In such a way, the agent explores the state space undirect-
edly [Thrun, 1992], i.e., without incorporating any mean-
ingful knowledge about the environment. Such exploration
heuristic turns out to work well in simple problem domains
but fails to handle more challenging domains, such as those
with extremely sparse rewards that result in exponentially in-
creasing state space.

Unlike the undirected exploratory behavior for agents us-
ing ǫ-greedy strategy, when human beings are intending to
explore an unfamiliar task domain, one often actively applies
domain knowledge for the task, accounts for the state space
that has been less frequently visited, and intentionally tries
out actions that lead to novel states. In this work, we aim
to mimic such exploratory behaviors to improve upon the
ǫ-greedy strategy with random action selection, and come
up with a more efficient informed exploration framework for
deep RL agents. On the one hand, we develop agent’s knowl-
edge on the environment and make it able to predict the fu-
ture trajectories. On the other hand, we integrate the de-
veloped knowledge with hashing techniques over the high-
dimensional state space in order to make the agent be able
to realistically evaluate the novelty for the predicted future
trajectories.

Specifically, in our proposed informed exploration frame-
work, first, we train an action-conditional prediction model
to predict future frames given a state-action pair. Second, to
perform hashing over the high-dimensional state space seen
by the agent, we train a deep convolutional autoencoder to
generate high-level features for the state and apply locality-
sensitive hashing (LSH) [Charikar, 2002] on the high-level
state features to generate binary codes to represent each state.
However, the learned hashing function is counting over the
actually seen states, while we need to query the counts for

http://arxiv.org/abs/1707.00524v2

the predicted future frames to compute their novelty. Hence,
we introduce an additional training phase for the autoencoder
to match the hash codes for the predicted frames with that
of their corresponding ground-truth frames (i.e., the actually
seen frames). In this way, we are able to utilize the envi-
ronment knowledge and hashing techniques over the high-
dimensional states to generate a reliable novelty evaluation
metric for the future direction pointed by each action given a
state.

2 Related Work

Recently, works on enhancing the exploration behavior of
deep RL agents have demonstrated great potential in im-
proving the performance of various challenging RL task do-
mains. In [Mnih et al., 2016], asynchronous training tech-
niques are adopted and multiple agents are created to perform
gradient-based learning to update the model parameters sep-
arately in the Atari 2600 domain. In [Osband et al., 2016],
an ensemble of Q-functions is trained to reduce the bias for
the values being approximated and increases the exploration
depth in the Atari 2600 domain. In [Houthooft et al., 2016],
an exploration strategy based on maximizing the informa-
tion gain of the agent’s belief about the environment dynam-
ics is adopted for tasks with continuous states and actions.
In [Achiam and Sastry, 2017], the KL-divergence between
the probability obtained from a learned dynamics model be-
fore and after updated by the experience is used to measure
the surprise over the experience. In [Bellemare et al., 2016;
Tang et al., 2017; Martin et al., 2017], the novelty of a state
is measured based on count-based mechanisms, and reward
shaping is performed by adding a reward bonus term inferred
from the value of counts. For all aforementioned approaches,
the exploration strategy is incorporated either in the function
approximation or during the optimization process, and the
agent still needs to randomly choose action to explore without
relying on any knowledge about the model. In this work, we
aim to conduct informed exploration by utilizing the model-
based knowledge to derive a deterministic choice of action
for the agent to explore.

Exploration with Deep Prediction Models Recent works
aiming to incentivize exploration via deep prediction mod-
els have shown promising results for deep RL domains.
In [Stadie et al., 2015], an autoencoder model is trained
jointly with the policy model, and the reconstruction error
from the autoencoder is used to determine the rareness of a
state. In [Pathak et al., 2017], the prediction loss for the tran-
sited state at the feature level is used to infer the novelty of
a state. In [Ostrovski et al., 2017], a pixelCNN is trained
jointly with the policy model as a density model for the state.
The prediction gain of a state is measured as the difference
of the state density given by the pixelCNN after and before
observing that state. In the above approaches, the novelty of
a state is measured by the loss or estimation output of an-
other model, which is not exact statistics. In our work, we
use the counts derived from hashing over the state space to re-
liably infer the novelty of a state. In [Oh et al., 2015], which
is a work mostly related to ours, an action-conditional pre-

diction model is trained to predict the future frame given a
state-action pair. Then they compute the Gaussian kernel dis-
tance between each predicted future frame and a set of history
frames, and inform the agent to take the action that leads to
the frames which are most dissimilar compared to a window
of recently seen frames. In our work, we use the same frame
prediction architecture as in [Oh et al., 2015], but our work ad-
ditionally performs hashing over the predicted future frames
to reliably infer the novelty of a possible action direction for
the agent to explore.

Hashing for Deep RL Domain Running RL algorithms on
the discretized features yields faster learning and promising
performance. It is shown that the latent features learned by
autoencoder trained in an unsupervised manner is of great
promise to efficiently discretize the high-dimensional state
space [Blundell et al., 2017]. In [Tang et al., 2017], the
state space for Atari 2600 domain is first discretized using
the latent features derived from an autoencoder model. Then
hashing is performed to encourage exploration by computing
a reward bonus term in a form like MBIE-EB [Strehl and
Littman, 2008]. Our work also introduces hashing over the
state space based on latent features trained from deep autoen-
coder model, but the exploration mechanism is significantly
different from [Tang et al., 2017]. First, in our work, we count
over the actually seen image frames, but query the hash for
the predicted frames. Second, in their approach, the reward
bonus inferred from hashing is directly added to the function
approximation target, which silently influences the previous
states backwards through Bellman equation. But in our work,
the count is used for informed exploration, which does not
have direct influence on the approximated Q-values.

3 Methodology

3.1 Notations

In this paper, we consider a discounted finite-horizon Markov
Decision Process (MDP) with discrete actions. Formally, it is
defined by a tuple (S,A,P ,R, γ), where S is a set of states
which could be high-dimensional or continuous, A is a set
of actions, P is a state transition probability distribution with
P(s′|s, a) specifying the probability for transiting to state s′

after issuing action a at state s, R is a reward function map-
ping each state-action pair to a reward in R, and γ ∈ [0, 1] is
a discount factor. The goal of the RL agent is to learn a pol-
icy π that maximizes the expected cumulative future rewards

given the policy: Eπ [
∑T

t=0
γtR(st, at)]. In the context of

deep RL, at each step t, an RL agent receives a state obser-
vation St ∈ R

r×m×n, where r is the number of consequent
frames to represent a state, and m × n is the dimension for
each frame. The agent selects an action at ∈ A among all the
l possible choices, and receives a reward rt ∈ R.

3.2 Informed Exploration Framework

We propose an informed exploration framework to mimic the
exploratory behavior of human beings under an unfamiliar
task domain. The overall exploration decision making pro-
cess is illustrated in Figure 1.

Figure 1: An illustration over the decision making for the informed exploration framework. At state St, the agent needs to choose from a
(1)
t

to a
(|A|)
t

an action to explore. Specifically, the states inside the dashed rectangle indicates predicted future states. The color of circles after St

indicates frequency/novelty of states, where lighter ones indicate novel states and darker ones indicate frequent states. The agent first predicts

future roll-outs, and then evaluate the novelty using hashing. In this example, a
(2)
t

is chosen because the followed roll-out is the most novel.

Generally, the RL agent no longer randomly selects an ac-
tion to explore without incorporating any domain knowledge.
Instead, we aim to let the agent intentionally select the ac-
tion that leads to the least frequent future states and thus ex-
plore the state space in an informed and deterministic manner.
To this end, we build the capability of the RL agent on per-
forming the following two tasks: 1) predicting over future
transitions, and 2) evaluating the visiting frequency for those
predicted future frames.

Figure 2: Deep neural network architectures adopted for informed
exploration. Up: action-conditional prediction model for predicting
over future transition frames; down: autoencoder model for con-
ducting hashing over the state space.

Learning Transition Model with Prediction Network

The architecture for action-conditional prediction is shown
in Figure 2 (up). To be specific, we train a deep prediction
model f : (St, at) → St+1 to make the agent able to pre-
dict over the future transitions given a state-action pair. The
state input St is a set of r recent image frames, and the action
input at is represented by at ∈ R

l, which is a one-hot vec-

tor, where l is the number of actions for the task domain. To
predict a new state, the model predicts one single frame at a
time, denoted as ŝ ∈ R

m×n. The new state St+1 is formed by
concatenating the predicted new frame with the most recent
r−1 frames. We adopt the action-conditional transformation
as proposed in [Oh et al., 2015] to form a joint feature for
the state input and the action input. Specifically, the state in-
put is first passed through three stacked convolutional layers
to form a feature vector hs

t ∈ R
h. Then the state feature h

s
t

and the one-hot action feature at perform a linear transforma-
tion by multiplying with their corresponding transformation
matrix W

s
t ∈ R

k×h and W
a
t ∈ R

k×l. After the linear trans-
formation, both features are shaped with the same dimension-
ality. Then the features for the state and action after the linear
transformation performs a multiplicative interaction to form
a joint feature as follows,

ht = W
s
th

s
t ⊙W

a
t h

a
t .

Afterwards, the joint feature ht is passed through stacked de-
convolutional layers and a sigmoid layer to form the final pre-
diction output. To predict over multiple future steps, the pre-
diction model progressively composes the new state using its
prediction result to predict the next-step transition. Note that
our prediction on frame-to-frame level is more precise than
those on feature level because the prediction target of frame-
to-frame is exact image from game environment while feature
prediction target is encoded feature extracted from a trained
neural network.

Hashing over the State Space with Autoencoder and LSH

To evaluate the novelty of a state, we adopt a hashing model
to count over the state space. We first train an autoencoder
model on frames, g : s∈R

m×n → ŝ∈R
m×n, in an unsuper-

vised manner (to classify the pixels), with the reconstruction
loss defined as follows [Kingma and Welling, 2014],

Lrec(st) = −
1

mn

n
∑

j=1

m
∑

i=1

(

log p(ŝtij)
)

, (1)

where ŝtij is the reconstructed pixel at the i-th row and the
j-th column. The architecture for the autoencoder model is

shown in Figure 2 (down). To be specific, each convolutional
layer is followed by a Rectifier Linear Unit (ReLU) layer and
a max pooling layer with a kernel size 2 × 2. To discretize
the state space, we hash over the last frame st of each state.
We adopt the output of the last ReLU layer from the encoder
as the high-level state features, and denote by φ(·) the cor-
responding feature map that generates the high-level feature
vector zt∈R

d of a state, i.e., φ(st) = zt. To further discretize
the state feature, locality-sensitive hashing (LSH) [Charikar,
2002] is adopted upon zt. To this end, a projection matrix
A ∈ R

p×d is randomly initialized with i.i.d. entries drawn
from a standard Gaussian N (0, 1). Then by projecting fea-
ture z through A, the sign of the outputs form a binary code,
c ∈ R

p. With the introduced discretization scheme, we are
able to count over the state space for the problem domain.
During the RL process, a hash table H is created. The count
for a state St, denoted by ψt, can be stored, queried and up-
dated from the hash table. Overall, the process for counting
over a state St is expressed in the following way:

zt = φ(st), ct = sgn(Azt), and ψt = H(ct). (2)

Matching the Prediction with Reality

To derive the novelty for the predicted frames while updating
the hash table by counting over the seen frames, we need to
match the predictions with realities, i.e., make the hash codes
for the predicted frames to be the same as their corresponding
ground-truth seen frames in training. To this end, we intro-
duce an additional training phase for the autoencoder model
g(·). To make the hash codes to be the same, the derived fea-
ture vectors of the predicted frames and the ground-truth seen
fames through φ(·) need to be close to each other. We intro-
duce an additional loss function of a pair of ground-truth seen
frame and predicted frame (st, ŝt) as follows,

Lmat(st, ŝt) = ‖φ(st)− φ(ŝt)‖2 (3)

Finally, by combing (1) and (3), we define the following over-
all loss function,

L(st, ŝt; θ) = Lrec(st) + Lrec(ŝt) + λLmat(st, ŝt), (4)

where θ is the parameter for the autoencoder. Note that even
though the prediction model could generate almost identical
frames, training the autoencoder with only the reconstruction
loss may lead to distinct state codes in all the task domains
(details will be shown in Section 4.2). Therefore, the effort
for matching the codes is necessary.

However, matching the state code while guaranteeing a
satisfying reconstruction behavior is extremely challenging.
Fine tuning an autoencoder fully trained with Lrec by involv-
ing the additional code matching loss Lmat would fast dis-
rupt the reconstruction behavior before the code loss could
decrease to the expected level. Training the autoencoder from
scratch with both Lrec and Lmat is also difficult, as Lmat
is initially very low and Lrec is very high. The network can
hardly find a direction to consistently decreaseLrec with such
an imbalance. Therefore, in this work, we propose to train the
autoencoder for two phases, where the first phase uses Lrec to
train on seen frames until convergence, and the second phase
uses the composed loss function L as in (4) to address the
requirement for matching the prediction with reality.

Computing Novelty for States

Once the prediction model f(·) and the autoencoder model
g(·) are both trained, the agent could perform informed ex-
ploration as illustrated in Figure 1. At each step, the agent
performs exploration with a probability less than ǫ and per-
forms greedy action selection otherwise. When performing
exploration, the agent strategically selects the most novel ac-
tion direction to explore. Given the state St, the agent first
performs roll-out with lengthH for the future trajectories pre-
dicted by the prediction model, for all the possible actions
aj ∈ A. Formally, the novelty score for an action aj given
state St, denoted by ρ(aj |St), is computed as,

ρ(aj |St) =

H
∑

i=1

βi−1

√

ψt+i + 0.01
, (5)

where ψt+i is the count for the future state St+i derived from
(2) by hashing over the predicted frame ŝt+i, H is a pre-
defined roll-out length, and β is a real-valued discount rate.
After evaluating the novelty for all the possible actions, the
agent selects the one with the highest novelty score to ex-
plore. Overall, the policy for the RL agent with the proposed
informed exploration strategy is defined as:

at =

{

argmax
a

[Q(St, a)] p ≥ ε,

argmax
a

[ρ(a|St)] p < ε,

where p is a random value sampled from Uniform (0,1), and
Q(St, a) is the output of the Q-value function.

4 Experiments

In the empirical evaluation, we use the Arcade Learning En-
vironment (ALE) [Bellemare et al., 2013], which consists of
Atari 2600 video games as the testing domain. We choose
5 representative games that require significant exploration to
learn the policy: Breakout, Freeway, Frostbite, Ms-Pacman
and Q-bert. Four of the five games, Freeway, Frostbite, Ms-
Pacman and Q-bert are classified as hard exploration games,
based on the taxonomy of exploration proposed in [Bellemare
et al., 2016], where Freeway has sparse reward and the others
have dense reward. Breakout, though not classified as hard
exploration game, demonstrates significant exploration bot-
tleneck with standard exploration attempt, as the state space
is changing rapidly as agent learn, and the performance with
standard exploration falls far behind advanced exploration
technique. Hence it is also included as a test domain.

For all the tasks, we use the state representation that con-
catenates 4 consequent image frames of size 84× 84.

4.1 Evaluation on Prediction Model

The architecture of the prediction model is identical to the
one shown in Figure 2 (up). To train the prediction model,
we create a training dataset which consists of 500,000 tran-
sition records generated by a fully trained DQN agent per-
forming under standard ǫ-greedy, where ǫ is set equal to
0.3 (same as [Oh et al., 2015]). During training, we adopt
Adam [Kingma and Ba, 2014] with a learning rate of 10−3

and a mini-batch size of 100. Moreover, we discount the gra-
dient scale by multiplying the gradient value by 10−2.

Figure 3: The prediction and reconstruction result for each task domain. For each task, we present 1 set of frames, where the four frames are
organized as follows: (1) the ground-truth frame seen by the agent; (2) the predicted frame by the prediction model; (3) the reconstruction
of autoencoder trained only with reconstruction loss; (4) the reconstruction of autoencoder trained after the second phase (i.e., trained with
both reconstruction loss and code matching loss). Overall, the prediction model could perfectly produce frame output, while the fully trained
autoencoder generates slightly blurred frames.

We show the pixel prediction loss in mean square error
(MSE) for multi-step future prediction in Table 1. For all the
task domains, the prediction losses are within a small scale.
For multi-step prediction, as expected, the prediction loss in-
creases with the increase of the prediction length. We demon-
strate that the trained prediction models are able to generate
realistic future frames which are visualized to be very close
to the ground-truth frames in Figure 3.

Game 1-step 3-step 5-step 10-step

Breakout 1.114e-05 3.611e-04 4.471e-04 5.296e-04
Freeway 2.856e-05 0.939e-05 1.424e-04 2.479e-04
Frostbite 7.230e-05 2.401e-04 5.142e-04 1.800e-03
Ms-Pacman 1.413e-04 4.353e-04 6.913e-04 1.226e-03
Q-bert 5.300e-05 1.570e-04 2.688e-04 4.552e-04

Table 1: The prediction loss in MSE for the trained prediction model.

4.2 Evaluation on Hashing with Autoencoder and
LSH

The architecture for the autoencoder model is identical to that
shown in Figure 2 (down). The autoencoder is trained on a
dataset collected in an identical manner as that for the predic-
tion model. It is trained under two phases. In the first phase,
it is trained with only reconstruction loss. We use Adam as
optimization algorithm, 10−3 as learning rate, a mini-batch
size of 100 and discount the gradient by multiplying 10−2. In
the second phase, we train the autoencoder based on the loss
in (4). Specifically, we use Adam as optimization algorithm,
10−4 as learning rate, a mini-batch size of 100, and λ value
of 0.01. We discount the gradient by multiplying the gradient
value by 5× 10−3.

(a) Code Loss (b) Reconstruction Loss

Figure 5: Comparison of the code loss and the frame reconstruction
loss (MSE) for autoencoder after the training of phase 1 & phase 2.

Overall, it is extremely challenging to match the state
codes for the predicted frames and their corresponding
seen frames while maintaining a satisfying reconstruction
performance. We demonstrate this in Figure 5 (a) by showing
the code loss, which is measured in terms of the number of
mismatch in binary codes between a pair of predicted frame
and its corresponding ground-truth frame. The presented
result is derived by averaging over 10,000 pairs of codes.
First, the result shows that without the second phase, it is
impossible to perform hashing with autoencoder trained only
by the reconstruction loss, since the average code losses
are above 1 in all the domains and with distinct hash codes,
the count values returned from querying the hash table are
meaningless. Second, the result shows that after the training
of the second phase, the code loss is significantly reduced.

We also show the reconstruction errors measured in terms
of MSE after the training of the two phases for each domain
in Figure 5 (b). By incorporating the code matching loss, the
reconstruction behavior for the autoencoder receives slightly
negative effect. A comparison of frame reconstruction effect

Figure 4: Left: the predicted future trajectories for each action in Breakout. In each row, the first frame is the ground-truth frame and
the following five frames are the predicted future trajectories with length 5. In each row, the agent takes one of the following actions
(continuously): (1) no-op; (2) fire; (3) right; (4) left. Right: the hash codes for the frames in the same row ordered in a top-down manner. To
save the space, four binary codes are grouped into one hex code, i.e., in a range of [0,15]. The color map is normalized linearly by hex value.

Model Breakout Freeway Frostbite Ms-Pacman Q-bert

DQN-Random 401.2 30.9 328.3 2281 3876
A3C 432.42 0 283.99 2327.8 19175.72

A3C-CTS 473.93 30.48 325.42 2401.04 19257.55
pixelCNN 448.2 31.7 1480 2489.3 5876
DQN-Informed 0.93 32.2 1287.01 2522 8238

DQN-Informed-Hash 451.93 33.92 1812.10 3526.60 8827.83

Table 2: Performance score for the proposed approach and baseline RL approaches.

after the training of the two phases are shown in Figure 3. It
is shown that after training to match the state codes, the re-
constructed frames are slightly blurred, but still able to reflect
the essential features in each problem domain.

Moreover, we use Breakout as an illustrative example to
demonstrate the hashing can generate meaningful hash codes
for predicted future frames (see Figure 4). For a given
ground-truth frame, we show the predicted frames with length
5 for taking each action. It can be found that different actions
lead to different trajectories of board positions. For the hash
codes, as three of the actions, no-op, fire and left, lead to little
change in frames, most of the future frames are hashed into
the same code. The action right leads to the most significant
changes in board position, so the codes for future frames are
much more distinct than the rest. Meanwhile, Figure 4 also
shows that the multi-step prediction model generates realistic
future frames.

4.3 Evaluation on Informed Exploration

We integrate the proposed informed exploration framework
into DQN algorithm [Mnih et al., 2015] and compare with
the following baselines: (1) DQN that performs ǫ-greedy with
uniform random action selection, denoted by DQN-Random;
(2) A3C [Mnih et al., 2016], (3)A3C with density model on
Atari features [Bellemare et al., 2016], (4) exploration with
pixelCNN-based density model [Ostrovski et al., 2017], (5)

the state-of-the-art informed exploration approach proposed
in [Oh et al., 2015], denoted by DQN-Informed. Our pro-
posed approach is denoted by DQN-Informed-Hash. We use
q = 3 as the length for hashing over future frames. We report
the result in Table 2.

Among all the test domains, DQN-Informed-Hash outper-
forms DQN-Informed, and there are significant performance
gains observed in each domain. Note that in Breakout, the
agent fails to progress with DQN-Informed and always scores
almost 0. It may due to that the kernel-based pixel dis-
tance evaluation metric used in DQN-Informed encourages
the agent to explore states that is dissimilar from the recent
history, which is insufficient to let the agent explore. Note
that DQN-Informed-Hash demonstrates the superior perfor-
mance with a deterministic exploration mechanism. It indi-
cates that counting over the predicted future frames could pro-
vide a meaningful direction for exploration.

5 Conclusion

In this paper, we propose an informed exploration framework
for deep RL domains with discrete action space. By incorpo-
rating a deep action-conditional prediction model over future
transitions and a hashing mechanism based on a deep autoen-
coder model and LSH, we enable the agent to predict over
the future trajectories and intuitively evaluate the novelty for
each future action direction based on the hashing result. Em-

pirical results on Atari 2600 domain show that the proposed
informed exploration framework could significantly improve
the exploration efficiency in several challenging deep RL do-
mains.

Acknowledgments

This work is funded by NTU Singapore Nanyang Assistant
Professorship (NAP) grant M4081532.020, MOE AcRF Tier-
1 grant 2016-T1-001-159, and Microsoft Research Asia.

References

[Achiam and Sastry, 2017] Joshua Achiam and Shankar Sas-
try. Surprise-based intrinsic motivation for deep reinforce-
ment learning. arXiv:1703.01732, 2017.

[Bellemare et al., 2013] M. G. Bellemare, Y. Naddaf, J. Ve-
ness, and M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Arti-
ficial Intelligence Research, 47:253–279, Jun 2013.

[Bellemare et al., 2016] Marc Bellemare, Sriram Srinivasan,
Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic
motivation. In NIPS, pages 1471–1479, 2016.

[Blundell et al., 2017] Charles Blundell, Benigno Uria,
Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z
Leibo, Jack Rae, Daan Wierstra, and Demis Hassabis.
Model-free episodic control. In ICML, 2017.

[Charikar, 2002] Moses S Charikar. Similarity estimation
techniques from rounding algorithms. In STOC, pages
380–388. ACM, 2002.

[Houthooft et al., 2016] Rein Houthooft, Xi Chen, Yan
Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Vime: Variational information maximizing exploration. In
NIPS, pages 1109–1117, 2016.

[Kingma and Ba, 2014] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[Kingma and Welling, 2014] Diederik P Kingma and Max
Welling. Auto-encoding variational bayes. In ICLR, 2014.

[Lillicrap et al., 2016] Timothy P Lillicrap, Jonathan J Hunt,
Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. In ICLR, 2016.

[Martin et al., 2017] Jarryd Martin, Suraj Narayanan Sasiku-
mar, Tom Everitt, and Marcus Hutter. Count-based explo-
ration in feature space for reinforcement learning. In IJ-
CAI, 2017.

[Mnih et al., 2015] V. Mnih, K. Kavukcuoglu, D. Silver,
A. a Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, A. Sadik
C. Beattie, I. Antonoglou, D. Kumaran H. King, D. Wier-
stra, S. Legg, and D. Hassabis. Human-level control
through deep reinforcement learning. Nature, 2015.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy P Lillicrap,

Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In
ICML, 2016.

[Oh et al., 2015] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee,
Richard L Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. In
NIPS, pages 2845–2853. 2015.

[Osband et al., 2016] Ian Osband, Charles Blundell, Alexan-
der Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In NIPS, pages 4026–4034, 2016.

[Ostrovski et al., 2017] Georg Ostrovski, Marc G Bellemare,
Aaron van den Oord, and Rémi Munos. Count-based ex-
ploration with neural density models. In ICML, 2017.

[Parisotto et al., 2016] Emilio Parisotto, Jimmy Ba, and Rus-
lan Salakhutdinov. Actor-mimic deep multitask and trans-
fer reinforcement learning. In ICLR, 2016.

[Pathak et al., 2017] Deepak Pathak, Pulkit Agrawal,
Alexei A Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. In ICML, 2017.

[Rusu et al., 2016] Andrei A. Rusu, Sergio Gomez Col-
menarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray
Kavukcuoglu, and Raia Hadsell. Policy distillation. In
ICLR, 2016.

[Schaul et al., 2016] Tom Schaul, John Quan, Ioannis
Antonoglou, and David Silver. Prioritized experience re-
play. In ICLR, 2016.

[Stadie et al., 2015] Bradly C Stadie, Sergey Levine, and
Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv:1507.00814,
2015.

[Strehl and Littman, 2008] Alexander L Strehl and
Michael L Littman. An analysis of model-based in-
terval estimation for markov decision processes. Journal
of Computer and System Sciences, 74(8):1309–1331,
2008.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[Tang et al., 2017] Haoran Tang, Rein Houthooft, Davis
Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. # exploration: A study
of count-based exploration for deep reinforcement learn-
ing. In NIPS, 2017.

[Thrun, 1992] Sebastian B Thrun. Efficient exploration in
reinforcement learning. 1992.

[Wang et al., 2016] Ziyu Wang, Tom Schaul, Matteo Hes-
sel, Hado van Hasselt, Marc Lanctot, and Nando de Fre-
itas. Dueling network architectures for deep reinforcement
learning. In ICML, pages 1995–2003, 2016.

[Yin and Pan, 2017] Haiyan Yin and Sinno Jialin Pan.
Knowledge transfer for deep reinforcement learning with
hierarchical experience replay. In AAAI, pages 1640–1646,
2017.

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Notations
	3.2 Informed Exploration Framework

	4 Experiments
	4.1 Evaluation on Prediction Model
	4.2 Evaluation on Hashing with Autoencoder and LSH
	4.3 Evaluation on Informed Exploration

	5 Conclusion

